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Abstract. The living brain is physically modelled as a universe, analogous 

to the existing physical model of the universe. The analogy is mathematically 
organized with the aid of a theory of physical quantities describing the matter 
from a phenomenological point of view. This theory is naturally connected with 
the scale of existence of a universe in general. Thus, while in the extant physical 
model of the universe gravitation, therefore the mass, prevails, in the brain 
universe the electric and magnetic charges prevail. However, the mathematical 
description of the two universes turns out to be the same in both cases. 
Therefore, physically, the charge, which is the fundamental property of the 
matter of living brain, should assume the same origin as the gravitational mass: it 
is ‘created’ under the influence of the matter. The creation goes, by and large the 
same way in both cases, through an algebraic combination of gravitational mass 
and charges, which can be appropriated as an inertial mass. This mass is 
controlled via the matter located at ‘infinity’ within the model, according to a 
general Mach principle. However, for the case of the brain universe, this infinity 
still needs to be defined, and we have to pursue this important task as we go 
along with our work. The analogy is momentarily transferred here into a mode of 
defining EEG and MEG signals. These are defined just like one defines the 
seismic signals: the Earth’s crust is thus analogous to a skull. A Yang-Mills 
static field is presented as an instance of electromagnetic field of such universe. 

 
Corresponding author; e-mail: nicmazilu@gmail.com 



34                                                         Nicolae Mazilu 
 

 

 

Keywords: neuron; light ray; brain universe; luxon; holography; hologram; 
electric charge; magnetic charge; Yang-Mills fields; skull recordings. 

 
1. Carrying the Physics into the Brain World 

 
Louis de Broglie has reached the essential idea that there is such a 

concept as the “wave phenomenon called material point” (de Broglie, 1926). Of 
course, when one talks about ‘material point’ in this context, one understands 
the classical material point, i.e. a position endowed with physical attributes: 
mass and charge, as this concept appears in the mechanical and 
electrodynamical equations of motion. However, starting from frequency, de 
Broglie’s theory cannot be but abstract, and this is what perpetuates that strange 
feeling at the association wave-particle, which generated idea of probabilistic 
interpretation of the wave. For, the frequency is, in general, a derived concept, 
from the more fundamental concept, if we may, of phase, taken as a primary 
concept, as we have shown earlier. To wit, even today the mystery of de Broglie 
frequency is a subject of debate. 

 In the physics of brain, though, just as in the physics of heart, one 
cannot renounce the concept of material point, in view of the conspicuous 
transport of charges. Apparently, indeed, such a physics is entirely based on 
some ‘motions’ of charges, and the material point is usually conceived as the 
support of charge. Therefore, speaking of a classical material point, we still 
have to maintain the Newtonian point of view in constructing a theory of waves, 
and this can be done most naturally, and universally we should say, via the 
experimental concept of phase. Indeed, if electrodynamics allowed the 
introduction of the idea of synchronization as a fundamental idea of special 
relativity, nowadays it is time to take notice that there are paradigms of 
synchronization that connect the concept of frequency with that of phase 
(Acebrón et al., 2005), even in a possibly, well-defined statistical way (Martens 
et al., 2009). It is this type of paradigm that is usually thought for in the case of 
research related to living tissues. In such a case, however, we need to take into 
consideration the electrostatics, and even magnetostatics, rather than 
electrodynamics; as we said, the cases of heart and brain are well-known 
examples, but one can easily come up with the general idea that any physical 
organism on Earth runs the life within based on electric phenomena. Now, with 
a proper consideration based on the idea of scale invariance of the static forces 
in the universe, a well-defined concept of phase can be introduced for the 
general benefit of knowledge, not just for the benefit of physics per se. For, a 
concept of material point can be defined, at any space location where static 
forces are in equilibrium. Thus, logically, a phase, therefore a wave, should be 
related with such a location, making, a ‘wave phenomenon called material 
point’ out of it, if it is to use the phrasing of Louis de Broglie. Let us now 
elaborate on these ideas. 
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2. A Newtonian Characterization of Coll’s Luxons 
  

In the Newtonian stand, cosmology is indeed based on forces, and these 
forces are of a special type. To wit, they should still be central forces, but with a 
magnitude depending exclusively on the distance between bodies, and that in a 
quite specific way: inversely proportional with the square of that distance. Of 
course, in reality, such a physical structure of the universe is not possible but 
only in cases where the structural units of the universe – the ‘bodies’ of the 
classical Newtonian natural philosophy – are so far apart from one another, that 
their dimensions are negligible with respect to the distance between them. In 
discovering the Newtonian forces thus described, one can safely assume that 
this dimensional condition of their theoretical possibility should have already 
been a reality in the universe accessible to our knowledge. Indeed, otherwise we 
would not have the Kepler laws governing the motions of celestial bodies, 
which led to the invention of such forces. One can hardly say that such is the 
case for the brain, where the charge seems to be transmitted in a physical 
process, more of the nature of a propagation, than by a motion per se. In trying 
to construct a physics of brain, it helps to recall that the dimensional 
geometrical condition above is by no means sufficient for the task of building a 
cosmology. First of all, a physical structure of the very structural unit of the 
universe – the ‘body’ of the classical Newtonian cosmology – is still needed. 
For, in time, the mankind became aware of the existence of still other 
Newtonian forces with the very same geometrical properties. The first instance 
of such forces in the quotidian world of our experience was the electric force of 
Charles Coulomb. And this is how, in fact, we became aware of the necessity of 
a scale in characterization of the action of Newtonian forces. Indeed, a phrase 
like that of Hermann Weyl, justifying the modern approach of cosmology, with 
a universe where… 

… the electricity, which obviously does not matter in the economy of 
cosmos, we now completely dismiss… [(Weyl, 1923), §39, p.290; our 
rendering and Italics] 

just reflects such an awareness. 
 This excerpt from Weyl, shows that we are, at least formally, allowed to 
think of a certain space scale as being the expression of the dominance of 
actions of one or another of the two different forces of the same mathematical 
nature, i.e. Newtonian forces. It is for these forces, that M. Berry and G. Klein 
proved their scale transcendence (Berry and Klein, 1984), and these are, in fact, 
the only forces satisfying the invariance of the dynamical description of the 
Kepler problem, making it a valid model of physical structures at any space 
scale (Mazilu, 2019). This observation entices us to take notice of what seems 
to be obvious by itself: the very same property of these forces that allowed 
Hermann Weyl to emit the speculative argument from the excerpt above, also 
allowed, a long time ago, to Charles Coulomb the positive task of experimental 
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description of electric forces. Indeed, in the case of Coulomb, there should be 
just a change in emphasis: in the ‘economy’ of daily life, it is the gravitation that 
‘does not matter’, therefore it can be dismissed, even though not quite by the 
same reasons the electricity at the cosmic level is dismissed. So, the apparent 
geometrical rigor, must be supplemented with this rigor of a physical nature, 
when judging the transition between universes at different space scales. 

But there is more to it, and that in quite an essential way: by the 
presence of Newtonian forces in this outline, the physical attributes of the 
fundamental units of matter are brought to the fore, in order to regulate the 
transition of scales. It turns out that they allow a mathematical characterization 
independent of the dimensional conditions, mandatory for a proper 
mathematical description of the dynamics of Kepler problem. More specifically, 
the dimensional condition defining this fundamental unit of matter in the 
physical structure of a certain universe, is capable of accommodating the 
existence of physical characteristics, and this fact can be formally described by 
a geometry of confinement having, mathematically speaking, the characteristic 
of an absolute of a Cayleyan geometry. One has here, indeed, a concept of 
confinement which, physically speaking, is completely independent of any 
spatial condition of the kind historically involved in discovering the forces of 
Newtonian type. Let us see what is this all about. 

First of all, in order to describe the fundamental units of matter in the same 
way in both cases – cosmos and daily life – the mass should be taken as the 
gravitational mass. Only in this case can one declare, as Weyl did, that for 
fundamental constitutive units possessing just gravitational mass and charge, in the 
case of ‘cosmos’ the Newtonian force due to gravitational mass prevails 
quantitatively over that due to electric charge. And only in this case, can we add 
that, in the case of ‘daily life’, the Newtonian force due to electric charge – the 
Coulombian force, as it is usually called – prevails over the force due to their 
gravitational mass, in order to be experimentally noticeable. Therefore, if we are to 
describe physically a certain universe, regardless of scale, the fundamental physical 
unit of this universe – the ‘luxon’, as we designated it every now and then, after 
Bartolomé Coll – should exercise two kinds of Newtonian forces acting 
simultaneously in any direction in space, at any distance: gravitational and electric. 
The universe would then be interpreted as an ensemble of such identical units, like 
the molecules of an ideal gas or those of an ideal fluid, only with Newtonian forces 
acting between them. The magnitude of the whole Newtonian force, acting between 
any two such identical fundamental physical units on a certain direction, at any 
distance, in a universe described in this way, can be written as 

 (1) 

with r denoting the distance between them. Here another assumption appears as 
necessary, and needs to be stressed once again, as an essential condition in the 
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description of a universe: the fundamental physical units of this universe are all 
identical, having the mass m and charge e, and the universe is described as 
existing in a space of gravitational constant G and electric permittivity ε. The 
Eq. (1) also expresses the fact that, according to our experience, along the same 
direction, the two Newtonian forces act differently along one and the same 
direction: one is a force of attraction, the other is a force of repulsion, and the 
different signs of the monomials in (1) represent an algebraic writing with 
respect to the orientation on the direction along which the action is exerted. 
Thus, for instance, the universe at the cosmic scale can be characterized by 

 
 

(2) 

so that, using the expression of Hermann Weyl, the ‘electric force can be 
dismissed’ at any distance and in any direction, while the universe at the daily 
scale can be characterized by 

 
 

(3) 

so that here the ‘gravitational force can be dismissed’ at any distance in any 
direction, as proved by Coulomb’s type experiments. Certainly the ‘distance’ 
should have different quantitative meaning in the two cases, and perhaps the 
‘direction’ too. Whence, in our opinion, the possibility of describing concurrent 
universes, even at different space scales, to which we suggest now a positive 
possibility of approach, offered by the ideas of the absolute – or Cayleyan – 
geometry, and based on the concept of Newtonian forces. 
 

 3. Static Definition of Coll’s Luxons 
  

Start with the observation that the structure of a universe is always a 
hypothesis, so that the problem occurs: is there an ideal static structure of the 
universe, formally the same at any scale, that would be able to describe even the 
structure of the fundamental physical unit of the universe? Mathematically 
speaking this is always possible from all of the points of view that may be 
involved in the natural philosophy of such a universe. First, under the concept 
of interpretation by ensembles with Newtonian forces between their constituent 
material points, keeping in mind that the gravitational forces are always forces 
of attraction, while the electric forces are always forces of repulsion, the static 
equilibrium ensemble can exist. Secondly, this consideration is independent of 
the space scale of the universe, insofar as, according to Berry and Klein’s 
theory, the action of the Newtonian forces transcends the time and space scales 
invariantly. Thus, for instance, a static universe dominated by the two 
Newtonian forces above, can be interpreted as an ensemble of luxons at any 
scale, provided 
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 (4) 

 

This would mean an ensemble of identical point particles, each one of 
them endowed with gravitational mass and electric charge, in static equilibrium: 
the forces between particles are in equilibrium in any direction for any particle 
of the ensemble. Such an interpretation naturally restricts the ratio between 
electric charge and gravitational mass of the luxons, but for now we disregard 
such a problem. 
 However there is another significant connotation of this approach of 
static equilibrium: as we already announced before, we can construct an absolute 
geometry based on the static equilibrium of forces, using Eq. (4) as the equation 
of an absolute in a geometry of the physical attributes of particles. First of all, 
contemplating some simplicity of the mathematics involved here, let us arrange a 
uniform notation based on Eq. (4), in order to simplify the algebra that follows. 
The terms in Eq. (4) are physically homogeneous, and both have the same 
composed unit (kgm3s–2). So, in order to make the notation uniform, we include 
the constants characterizing the space of residence of matter in the definition of 
the physical properties of the material particles, by the following transcriptions: 

 
 

 

These notations are intended to suggest that the first term in (4.4) is 
referring only to gravitational mass (m), while the second is referring only to the 
electric charge (e). This means that a universe is here interpreted by a static 
ensemble of identical luxons, each one of them having two physical 
characteristics: mass (gravitational) and charge (electric). Therefore, limiting 
ourselves, for the moment, to just two physical attributes: gravitational mass 
and electric charge, the condition to be satisfied by an ensemble of identical 
material points serving for the interpretation of a static universe independently 
of space scale should be written in the form: 

 

 (5) 
 

The left hand side of this equation thus symbolizes a homogeneous 
quadratic, i.e. a polynomial of second degree in its variables, whence the choice 
of symbol Q. Taken as absolute of a Cayleyan geometry of the two-dimensional 
physical quantities – gravitational mass and electric charge – of luxons, it 
divides the plane of these characteristics in two parts: the ‘inside’ part, for 
which we assume that the quadratic form is positive, and the ‘outside’ part, for 
which the quadratic form is negative. This is just a convention, adopted so that 
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the ‘cosmos’, characterized by Eq. (2) should be inside the absolute, very close 
to its center with respect to the charge, while the ‘microcosmos’, described by 
Eq. (3), should be outside of absolute, very far away with respect to the 
gravitational mass. The true measure of these degrees of ‘closeness’ is, 
nevertheless, offered by the quantity Q defined in Eq. (5). The positive part of 
this construction is that, once we give a metric for this geometry, we are always 
able to find space distributions of the quantities of gravitational mass and 
charge, using the harmonic mappings. The actual construction of these 
distributions may not be quite as easy as it appears, but in some cases it may be 
indicative of the right path of our knowledge. 

For instance, the Barbilian formula for the elementary arclength of the 
metric geometry of this universe, is always fit for such occasions (Barbilian, 1937); 
see also (Mazilu et al., 2019) and offers, indeed, a Cayleyan metric of the plane of 
the two physical attributes, as it were, which thus we should take in the form 

 
 

 

up to a multiplicative constant. The reason for this choice of sign for the 
Cayleyan metric becomes obvious by noticing that, after due calculations the 
metric becomes a perfect square: 

 (6) 

 

and a perfect square of a real quantity should be always positive. Thus the 
interior of the absolute is characterized by a proper hyperbolic angle, ψ say, 
whose variation turns out to be our metric. Indeed we have: 

  

The metric of physical characteristics of this universe depends on the 
ratio between charge and mass, a case well known in the history of physics. 
Only, we have to observe that here the mass is gravitational, while in the 
historical case the mass was inertial, as a consequence of dynamics used in 
describing the electron. 
 A problem surfaces when the charge ‘splits’, so to speak, i.e. there are 
Newtonian forces of electric nature and also Newtonian forces of magnetic 
nature. This could be the case if the Coll’s luxons have a third physical 
attribute, viz. a magnetic charge and, as a result of this, a magnetic force, which 
is still Newtonian in character (Maxwell, 1873). As our experience shows, the 
magnetic poles of the same name behave exactly like the electric poles of the 
same charge. Therefore, a static universe interpreted by ensembles of such 
luxons with three physical characteristics, not just only two, will be described 
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by a quadratic quantity reflecting the presence of both electric and magnetic 
charges. According to the very same theory of the Newtonian forces, this 
quantity must be 

 (7) 

 

instead of (4). Indeed, the vanishing of this quantity, with the electric charge qE 
and the magnetic charge qM appropriately defined, describes a static ensemble 
of luxons in equilibrium under the three Newtonian forces prompted by the 
three physical properties. 

In this case, according to our metrization procedure of the physical 
characteristics of luxons in the matter, the same rules apply for calculating the 
absolute metric in the case of three physical properties of material particles. To 
wit, instead of (6), we have, with (7), the absolute metric 

 

 (8) 

 

In spite of its appearance, this quadratic form is a surface property, insofar as it 
can be expressed in two variables: x ≡ qE/m and y ≡ qM/m in the form: 
 

  

 

However, this property of the expression can be seen directly through a 
transformation suggested by the quadratic form from Eq. (7), namely: 

 (9) 

Inserting these into (8) results in a well-known form of the metric in  and : 

 (10) 

This is manifestly a metric of negative curvature, that can also be 
revealed for the relativistic velocity space, for instance. Obviously, the quantity 
q can be calculated from (9) and amounts to 

 (11) 

but the absolute metric does not depend on it explicitly. In other words, the 
absolute metric, in the space of physical attributes of matter, like everywhere in 
fact, is a two-dimensional surface quantity, as we said. From the concept of 
interpretation point of view, the condition q ≠ 0 is a nonequilibrium condition, 
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referring to the very ensemble serving to interpretation. There are such 
ensembles of luxons for the interior of the absolute, as well as for the exterior of 
the absolute. As per our convention, the interior of absolute describes the matter 
at the cosmic scale, and in this case we have a quite well known case indicating 
the nature of q. One notices, indeed, that, towards the center of the absolute, q 
approaches m, and this fact entitles us in considering it as a measure of the 
inertial mass, which in this case is not exactly equal to the gravitational mass. 
Rather, the Eq. (11) can be rewritten as: 

 (12) 

showing positively that in building the general relativity, Einstein was, indeed, 
entitled to ‘dismiss’ the difference between the gravitational and inertial mass 
(Einstein, 2004), because, as Hermann Weyl uttered it, we are always entitled to 
‘dismiss the electricity in the economy of the universe’. 
 

4. A Physical Model of Charges 
  

The Eq. (7) suggests an important identity which is, we should say, in 
the natural order of things we perceive in this universe. To wit, we can assume 
the relation 

 (13) 

a mathematical expression signifying the idea that we cannot physically decide 
how much of the perceived charge is electric and how much of it is magnetic. 
This equation represents what we believe as one of the most striking pages of 
the modern natural philosophy. And unique of its kind too! It therefore deserves 
a little more elaboration, inasmuch as this turns out to be quite useful in 
developing a theory of the universes based not on mechanical inertia, but static 
universes, based on the electric and magnetic ‘inertia’, as it were. These 
universes can model life sustaining organs, like the brain for instance, which is 
our subject-matter in this work. Only, we have to pay close attention to an 
important issue in such a modeling: the living organs do not exercise their 
function by themselves, but in connection with other organs. 

The essential physical trait of a universe, as physically conceived 
nowadays, is its uniqueness. This means that the universe is conceived as the 
world we live in, and, no matter of their space scale, all things material in this 
universe are to be described as simultaneously existing in such a world, and 
having the same fundamental physical structure. For instance all of them have 
the same property of inertia, all of them have to be described by the rules of 
dynamics etc.: there is no discrimination in dominance of the physical 
attributes, of the kind we have shown above. This philosophy has always 
promoted the synthetic approach of the whole, usually represented as a set of 
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parts put together by external connections, an approach that may serve the 
social life to a certain extent, but surely does not touch the fundamental laws of 
existence. The reason is that the connections in question are, as a rule, only 
those controllable by human means, and these are quite limited in number, 
while a part, in its capacity as organ, is itself a universe, with an unlimited 
number of connections, as it were. 

Perhaps these ideas are not quite so clear for everybody, but the 
previous manner of constructing the physical universe, surely can display the 
essential points as clearly as possible. First, the matter is there present by a 
density related to its three attributes – the mass and the two charges – 
concurrently. The usual approach in physics is a ‘one-by-one’, as it were: the 
mechanics deals in the density of mass, the electrostatics deals in the density of 
charge, and so on. But this is not all of it: in the construction of a model 
universe, we assume that the mass is dominant at any scale, be it microcosm, 
daily life of macrocosm, and in the very same way, mathematically expressed 
by the positive sign of the expression (11). The Einstein’s conclusion, 
sanctioning the results of Eötvös experiments, according to which the inertial 
mass can be safely considered as identical to gravitational mass, is always 
presented as independent of space scale where the universe is contemplated. In 
other words, the universe is unique, as we said before, and the physics of its 
parts is independent of scale. With the model universe presented by an absolute 
geometry of the physical attributes, the things go in an essentially different 
direction of thinking. 

To wit, that model was constructed based on the explicit quantitative 
dominance of the gravitational mass in each and every one of its identical 
representative constituents, the luxons. Thus, the whole metric geometry of the 
universe is presented based on an inequality: 

 q2  m2  q
E
2  q

M
2  0  (14) 

assumed to be valid in this universe for every material particle of it. We called 
the quantity q inertial mass, and if we think of it in classical terms, this universe 
is filled with matter whose constitutive formations all satisfy (14) in a way or 
another. Dealing in inertial mass, so to speak, the universe ‘extends’ until the 
condition q2  0 becomes effective, which represents the infinity in its definition: 
the absolute. Physically, the absolute represents a world of particles having null 
inertial mass, just like de Broglie’s photons in the case of light, or the Coll’s 
luxons here. But here the analogy stops: these null mass particles – which we 
call luxons – are, unlike the old photons, static fictitious particles, serving 
merely for the wave-mechanical interpretation of matter. 

Now, this is only what the mathematics say. Physically, the inequality 
(14) is taken as characterizing a universe in its entirety, which becomes unique 
in this way. The inertial mass is thereby controlled by the matter located beyond 
the spatial possibilities of human accessibility, and the equality between inertial 
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and gravitational mass should mean that such matter prevails quantitatively 
regardless of scale. Therefore, regardless of how far can we extend the limit of 
our observations in space, the matter outside that limit is quantitatively 
dominant. In other words, we cannot access but an infinitesimal amount of 
matter in any finite space, and regardless of how much we extend our capability 
of knowing the universe, there will always be ‘missing mass’, if it is to use the 
guise of modern theoretical physics. Not so if we properly use the geometrical 
model in its fullness! 
 Indeed, the previous physical assumption (14) leaves aside the condition 

 q2  m2  q
E
2  q

M
2  0  (15) 

as being physically intractable. However, from the point of view of an absolute 
geometry based on (14), this condition represents points outside the absolute, 
and these are describable by an angular metric, as it were, inasmuch as the root 
of this quantity is purely imaginary. In other words, these points are prone to 
represent phases, like the de Broglie phases, which can be described as such 
with respect to the speed of light. They characterize, indeed, the argument of the 
waves associated with particles in the usual physical cosmology, and these 
waves propagate with a speed higher than that of light. However, from a general 
physical point of view, we can have here a world where the charge prevails over 
the gravitational mass, and this world is certainly real: it can be either the world 
of our daily life or, even better, at another scale, the microcosmos of particles 
constituting the matter. These satisfy to the inequalities: 

 (16) 

Incidentally, one can thus have a logical explanation why the wave mechanics 
made its mark especially in the microcosmos. The general idea is that, 
mathematically and physically, a universe proper cannot exist without its two 
worlds – of particles and waves – at different scales, representing the structure 
of matter contained in it. Taken as such, the universes can be multiple with no 
problems: they can be described by the position of their absolutes with respect 
to each other. However, inasmuch as this description can become awfully 
involved, for the moment we shall describe a unique universe of the 
microscopic world based on the quantitative inequality (16), just like we did 
before for (14). This represents a world where the charge prevails over the 
inertial mass. This would be, unconditionally, the world of human brain, or of 
human heart, but microscopical in character, so that we can apply all the 
previously developed wave-mechanical theory. 
 

5. A Way of Charge Transmission: Solitons 
  

In order to elucidate what that ‘microscopical in character’ means, we 
need the metric of this cosmology: if it is to extend the analogy to details, the 
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analog of Eq. (10) is the best place to start, in fact the only place to start. The 
metric still has the geometrical expression (8) up to its sign, but with mass and 
charges from Eq. (9) given by a transformation satisfying naturally the defining 
condition (16) for this universe: 

 

 

(17) 

Thus, instead of Eq. (10), we have now for the metric of this universe 

 (ds)2  (d)2  cosh2  (d)2

 (18) 

but the analogy between this universe and the customary one seems to stop here, 
short of any conclusion. This is due to the fact that we do not know what to do 
with this metric: we do not have as our disposal the Einsteinian guiding 
principles of general relativity, which places its stakes on the metric, in order to 
describe the motion. However, as we already have noticed before, the motion in 
the brain universe can only be a metaphor, at the most: the charge is 
‘transmitted’ in the brain, it is not ‘moving’ in the usual sense we assign to this 
word. This impasse should, nevertheless, not be taken seriously. 

Fact is that the description of motion is not the only lesson we have to 
take from the general relativity, especially when it is to carry this lesson over to 
a cosmology. In view of the meaning of the parameters  and , as this meaning 
comes out of the Eqs. (9) or (17), we may be interested in knowing how these 
parameters behave in the host space of the matter, rather than with respect to a 
motion. Indeed, the motion is referring to a material point, while the distribution 
of mass and charge can be a collective property of ensembles of such material 
points. According to the precepts of general relativity and wave mechanics the 
distribution of charge and mass in the host space would then involve the 
concept of field. And, in this respect, we have to recall that Frederick Ernst has 
shown that knowing the properties of the host space of matter, the Einstein’s 
field equations are reducible to a variational principle (Ernst, 1968; Ernst, 
1971), namely a Dirichlet-type principle defining some so-called harmonic 
applications - see (Misner, 1978), for an account of using the harmonic 
applications in physics. The general Dirichlet’s principle can be presented here 
as follows (Eells and Sampson, 1964). 

An application of the physical attributes onto the host space should 
have, in general, two components, if it is to consider the metrics (10) and (18) of 
the manifolds of these physical attributes. Only in the case of charge and 
gravitational mass only, the dimension of the manifold is one (the variable ). 
Such an application can be represented therefore as having two components, 
functions of position in the host space. In a uniform notation, we put: 

 (19)
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If the host space is characterized by the tensor h, and the metric tensor 
of the manifold of physical attributes – let us call it a surface for now, in order 
to highlight its usual dimension – is g say, then by application (19) the matter 
induces a deformation in space, described by the following variation of the its 
metric tensor: 

 (20)

Thus, we can define a one-parameter family of metric tensors ‘updated by 
matter’, as it were: 

 (21)

where  is the parameter of this family. The volume of space filled with matter, 
say H, to be in some accordance with the notation for the metric tensor, can be 
calculated with the benefit of the deformed metric, the way such a volume is 
usually calculated, i.e. by an integral: 

 

 

(22)

Then, with this functional, we can define the energy of application (19) as: 

 

 

(23)

where h is the determinant of the extant host space metric h. The scalar 
integrand: 

  
(24)

counts as a density of energy of the application f(x). Considering the functional 
E(f) stationary, a regular variational principle produces the system of partial 
differential equations 

 
 

(25)

where we used some traditional notations for the partial derivatives and the 
Christoffel’s symbols of second kind of the surface metrics. Ernst discovery is 
that the Einstein gravitational equations for the vacuum and electrovacuum 
fields can be reduced to such an equation for a variant of the metric (10) 
involving a complex potential (Ernst, 1968). 

Thus the analogy between the customary universe of physics and the 
brain universe does not really stop: it just needs to be properly conducted. For 
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our convenience, we illustrate now the Ernst theory in the brain universe, 
therefore with reference to the metric (18), assuming that the host space is 
Euclidean. The principle of harmonic applications will produce the system (25) 
in the form 

 2  sinh cosh ()2  0; [cosh2  ()]  0
 

(26) 

which shall be used to describe the location of charge in space and the 
characteristics of its distribution. One can see that in the case of only electric 
charge and mass, the only equation remaining here is the Laplace equation for 
the ratio between charge and mass - see Eq. (6). However, we are really 
interested in a general manifold of physical attributes, having therefore two 
dimensions. 

Indeed, speaking of the charge at least, is known that it always realizes 
stationary distributions on surfaces. Again, a manifold coordinated by the 
parameters   and   as functions of position in space can also be organized as a 
surface in space. So, we can try to solve the system (26) with respect to a 
parameter representing the distance from a plane in space, that, incidentally, can be 
the tangent plane of such a surface. That dependence can be realized via a linear 
form in the position coordinates, i.e. through a dot product of the form  ax. In 
this case, the system (26) can provide solitonic-type solution: distribution 
described by the parameters  and  as functions of the distance of a plane in 
space. Eq. (26) can be written as a system of two second order ordinary 
differential equations: 

   sinh cosh(  )2  0; [cosh2 (  ) ]  0
 

(27) 

with a prime denoting the derivative with respect to ξ. The second of these 
equations can be integrated right away, and gives the result 

  
C

cosh2   
(28) 

where C is a constant of integration, which we take as real number. Using (28) 
in the first of equation from (27) gives 

 
 

 

This can again be integrated directly, multiplying it by 2ψ′, which leads to a 
first implicit integral 

  C2 sinh
cosh3

 0  (  )2  C1
2 

C2

cosh2 
 

with C1 a new real constant of integration. There is no sign problem in the right-
hand side here: all things considered real, the expression is positive, and the 
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square root does not involve any complex numbers. After some calculations we 
can arrange here a total differential 

 
d(sinh)

sinh2   cosh2 
0

 C
0
(d)  

and therefore, a direct integration to a closed form solution: 

 sinh  cosh
0
sinh[C

0
(  

0
)]  (29) 

where C0, ψ0 and ξ0 are real constants of integration. Using this last result in Eq. 
(28) we get the exact differential 

 d  C0
2 tanh2 0

d
sinh2[C0 (  0 )]

 

that can be integrated right away giving the closed form result: 

 


0
 

C
0
tanh2 

0


cosh[C

0
(  

0
)]

sinh[C0 (  0 )]
(30) 

θ0 being still another integration constant. In getting these results one can use 
tabulated formulas in order to avoid too much calculational effort. The Eqs. (29) 
and (30) provide our solution to differential system (27). It depends on four real 
parameters: θ0, ξ0, ψ0 and C0, which can be fixed by some boundary conditions, 
appropriate to the problem. This may turn out to be a routine, but it does not 
touch the essentials of the physical argument. However, that argument is 
strongly influenced by the fact that the vector a is completely arbitrary in the 
definition of the parameter ξ. 

While, in order to extract any proper physical meaning of the results 
right above, we need to shift the reason to a proper phenomenology of the brain 
universe, we feel like giving the reader an idea about the finality of these results 
right away. This finality is independent on any physical explanation – on the 
contrary, such an explanation rests upon its understanding – and regards the 
idea of de Broglie ray, which is a concept we should contemplate here as part 
and parcel of the physics of brain - see (Mazilu et al., 2019). Indeed, in 
obtaining the regular classical meaning of the phase – equation, Louis de 
Broglie used a condition on the amplitude of the wave associated with the 
particles: the ratio of that amplitude to its derivative along the ray vanishes at 
the position of particle. This has as consequence the fact that as one approaches 
the moving particle at constant time along the ray, the amplitude varies 
inversely with the distance to particle. This condition is the most general 
condition of definition of an ensemble of ‘contemporary’ particles necessary to 
a process of interpretation, particularly an ensemble of simultaneous positions. 
However, there is here a subtle reference to the fact that the definition depends 
on the physical characteristics of its element. If this element is participating in 
different waves, propagating in different directions in space, the de Broglie’s 
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condition is directional: we need to know with respect to which direction that 
‘inverse proportionality’ is reckoned. This can only be judged with respect to 
the tangent plane of the wave touching the point at a certain moment of time, 
and that distance is measured by the parameter  introduced by us right above. 

 
6. Switching to a Phenomenology of the Brain World 

 
In constructing the physics of brain, we have to overcome one of the 

toughest issues that the idea of analogy between universes can encounter: there 
is no motion in the brain, at least not in the classical sense of this word, or even 
in the sense of relativity for that matter. This is why we have to rely here on the 
idea of wave in the first place. Solving this issue would require us to move the 
analogy over to another plane of thinking, in order to get read of the classical 
understanding of inertia, and to replace it with a concept appropriate to the brain 
world. This chapter of our work is dedicated to this subject. The results will be 
used to physically describe the ‘brain waves’ so to speak. 

 
7. The Natural Philosophy of Charges 

  
In spite of the fact that we have to leave it aside the usual concept of 

inertia in the brain world, the physical basis of working of this world can still be 
understood by a sheer analogy with the extant ‘inertial universe’ of physics, as it 
were. This statement has, nevertheless, a precise meaning here: to wit, the 
charge q, in a charge-dominated universe, just like the inertial mass in the 
regular Newtonian universe, should be induced by the matter spatially located 
outside our perception limits. Only, as there are two kinds of charges, things 
become a little more involved than in the case of inertial mass: the charge can 
be randomly induced as electric, as well as magnetic charge. Due to the Eq. (13) 
a phase proper is involved in this description, therefore a de Broglie-type wave 
can be associated with the constitutive particles of this universe. 

Now, if we assume the identity (13), the charge e splits, ‘Euclidean-
wise’ so to speak, into an electric charge qE and a magnetic charge qM. In 
today’s theoretical physics this speaks out of a specific invariance of 
electromagnetic theory: the invariance with respect to what is today generally 
known as the duality rotation in electromagnetics. Expressed simply, this 
rotation is just a Euclidean rotation that leaves invariant the experimental 
electric charge e of the ‘split’suggested in Eq. (9): 

 (31) 

Here θ is the angle variable describing the split among the possible experiments 
with the charge. Some of these experiments involve the ‘non-gravitational 
force’ as it were, in its ‘electric instance’, some in its ‘magnetic instance’, and 
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that assignment is unrecognizable in experiment, therefore uncontrollable. The 
argument then goes on to declare that the Maxwellian theory, with its privileging 
the electric charge monopoles, and eliminating the magnetic charge ones, 
represents just one possible choice of the split angle – more to the point, θ  0 – 
among infinitely many others. The magnetic pole case would be represented here 
by the choice θ  π/2 for the experiments involving charges. Theoretically, the 
extra degree of freedom, represented in concrete terms by the existence of 
duality rotation with respect to which the whole charge behaves invariantly, can 
be allocated to the known possibility of transition between field description by 
electric and magnetic intensities, and Maxwell stresses description (Katz, 1965). 
As to the natural philosophical reason of this possibility, it is indeed quite 
remarkable. Quoting: 

 It is frequently pointed out that the crucial difference 
between electric and magnetic phenomena, which underlies this 
dissimilarity (between Maxwell equation for the electric field 
and Maxwell equation for the magnetic field, n/a), is that 
electric charges occur in nature as monopoles whereas 
magnetic charges do not so occur, but only as dipoles, and 
higher poles. This is demonstrated, for example, by breaking a 
permanent magnet in two. In so doing one does not obtain free 
north and south poles: each piece has again both polarities of 
equal magnitude. The mathematical formulation of this 
situation leads then to the equation divB = 0. On the other hand, 
electric charges can be obtained free, it is said. 
 This reasoning is incomplete and deceptive. It is true 
that a permanent magnet has equal and opposite magnetic 
charges near its ends, and that by breaking the magnet in two 
and separating the parts and inserting a chunk of empty space 
between them new poles will appear on the new surfaces. But it 
is equally true that electric charges occur only in equal pairs of 
opposite sign at opposite ends of a chunk of vacuum, for 
example, by rubbing a rubber rod with a catskin and then 
separating the two. The vacuum between the rod and the 
catskin is analogous to the permanent magnet in that it has 
charges of equal magnitude and opposite sign at opposite ends. 
If we now break the vacuum space between the two ends in 
two, by inserting, for example, an isolated conductor between 
them, then charges are induced on the metal-vacuum interfaces 
such that each of the two chunks of vacuum carries again zero 
total charges at its ends. A well-known variation of this 
procedure is the so called ice-pail experiment of Faraday. One 
can pursue this reasoning further. The conclusion is that also 
electric charges occur only in pairs which can be looked at as 
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the result of polarization. The only difference is that magnetic 
poles appear as a result of polarization of a region of space 
filled with matter (and so far no region of space filled with 
vacuum has yielded to polarization of this kind), whereas 
electric charges appear as a result of polarization of a region of 
space filled with vacuum as well as at one filled with matter. 
 Logically and formally it is therefore possible to treat 
electricity and magnetism completely similarly, as long as one 
is willing to treat a region of space filled with vacuum on the 
same footing as a region of space filled with matter (Katz, 
1965). 

 

This last sentence is, in our opinion, of considerable importance for a natural 
philosophy of the brain world: rarely, if ever, is one willing to recognize in 
physics that while theoretically treating the vacuum unreservedly as a material, 
one has also the obligation to think of it as of a material of the daily life, as of a 
‘chunk’ in the expression of Katz. It seems to us that the electromagnetic theory 
has more to show than it appears at the first sight. For instance, not only it 
enforced the relativity at the time it did, an obligation that turned the physics 
upside down, as it were, but also tells us how to turn our very intuition into 
concept, and that in a right way. As far as we are concerned, the message of the 
previous excerpt is quite clear: the existence or non-existence of the singular 
magnetic poles – the magnetic monopoles of today’s physics – is pending on the 
necessity of describing the electromagnetic field by Maxwell stresses. This 
requires, indeed, more than the wave-mechanical idea of interpretation – it calls 
for a reverse interpretation –to which we shall return later on, on a special 
occasion of the physics of brain. 

 
8. Three-Dimensional Space of Charges 

  
The Eq. (13) unlocks a circumstance in physics similar to that unlocked 

by Fresnel’s mathematical treatment of diffraction. Just like the light in that 
historical case, here too, but this time the charge, may be treated via harmonic 
oscillators. And, when recalling the historical fact that light can be described as 
an electromagnetic phenomenon, we are inclined to believe that this kind of 
treatment for the charge prevails ontologically over that of Fresnel for light. 
Fact is though, that, just like in the case of light, a dynamical problem based on 
the equation of motion of harmonic oscillator does not make sense for the case 
of charge, the very same way it made sense for the light in Fresnel’s take. 
Specifically, like in the old case of the Fresnel’s theory of light, the second 
order differential equation jumps our mathematical reasoning in the case of 
charge too, by the very nature of the mathematical apparatus. Indeed, if we 
assume (13), we should further assume that 
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 (32) 

Then, as the Eq. (31) suggests, the geometry of charge space is a priori dictated 
by a second order differential equation having the phase  as independent 
variable replacing the classical time, but this variable actually represents the 
split of charge in different experiments involving the electricity. The Eq. (32) 
extends the logic that led to the Eqs. (9) or (17). It says that what happens in the 
case of electric charge can just as well happen in the case of magnetic charge: 
when physically perceiving the magnetic charge, there is an uncontrollable 
electric part of it, and an uncontrollable magnetic part of it. 

Now, as we said, just like in the case of Fresnel’s light, the second order 
differential equation, valid here by the geometrical nature of Eq. (32), may be 
physically endorsed by the second principle of mechanics, inasmuch as a second 
order differential with respect to a phase that may be taken as time, can always 
be appropriated as an acceleration. And, just in the classical case of light, the 
procedure is doomed to a dynamical nonsense, as the inertial mass effects are 
negligible, perhaps nonexistent. However, for the benefit of future 
developments here, we need to reveal that the split of charge is equivalent to an 
extremum property of the Eq. (13), that directs the physical reasoning away 
from dynamics, just as it happened in the classical situation, where the 
reasoning was directed to electrodynamics in the case of light. Indeed, take the 
case of one of the quadratic equations from among those of (32), to wit, that 
from Eq. (4.13). Assume an experiment that reveals the value e for the charge. 
Then, naturally, we need to know how much of this charge is assigned to electric 
property and how much is assigned to magnetic property. We need a constraint in 
order to do that and, historically speaking at least, physics has assigned a linear 
connection between the two charges. This represents the natural condition that a 
real charge can always be represented as located on a straight line in the charge 
plane. So, if we denote the alleged experimental charges by q1 and q2, we are 
entitled to find the extremum of the function of two variables 

 (33) 

provided the linear expression, conveniently defined by the electric and magnetic 
properties as a bilinear form, suggested by the differentials in the metric (8): 

 (34) 

has a given value. The extremum of charge is then assured for 

 (35) 

In other words, the split angle from Eq. (31) is the supplement of phase  due 
to the indecision of experimental charge. This means that we have a theoretical 
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reason for considering the idea of charge plane, pending on the physical 
meaning of the linear connection (34) between the two kinds of charge. As it 
turns out, there is a reason, not only for that, but also for the very quadratic 
forms from the Eq. (32). 

In (Mazilu et al., 2019), we have presented an analog of the coordinate 
along the physical ray, necessary, according to Bartolomé Coll, for the 
construction of a coordinate system. The ray surface is always transversal to this 
coordinate line, and we have to describe this situation in terms of the coordinate 
line alone. Assume that it is represented as a vector in a certain reference frame, 
that vary only across the ray, more to the point perpendicularly on the 
coordinate line. In the case of gravitational field of the Earth – which, more 
generally, is also the case of a Schwarzschild field in general relativity – this 
represents the motion of charges lifted from the crust on atmospheric vortices, 
in order to create the electricity in the atmosphere. One needs to describe this 
situation exclusively with respect to the coordinate line as a primary concept: 
any external inclusion in the description would involve the coordinate system to 
which the coordinate line belongs, and therefore the coordinate line would not 
be a primary concept anymore. 

Denote m the vector long the coordinate line represented by a certain 
physical ray. In their capacity as coordinates along the ray, the components of 
the vector m reveal the transversal velocities: 

 
 

(36)

where  is a constant frequency and an overdot means time derivative as usual. 
These equations represent a motion perpendicular to the ray, as in the case of 
light. Now, the equations of this motion can be ‘decoupled’, so to speak, by 
successive differentiation on time. The conclusion is that each component of the 
motion described by (36) is solution of the very same third order differential 
equation, i.e. the vector m is solution of the same equation: 

 
 

(37)

We are searching for constant integrals of this motion, starting from the 
differential system (36) and trying to find exact differentials that could offer us 
a physical interpretation to the parameter of continuity. The most obvious 
method involves linear forms in coordinates. For instance, we can derive the 
exact differential equivalent to the system (36): 

 (38)

 

with constant (a, b, c). Such exact differentials can exist under the conditions 

 (39)
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with λ a parameter. This means that the left-hand side of the Eq. (38) is an exact 
differential only for the cases in which λ has as values the roots of the cubic 
equation: 

  
 

representing the condition of compatibility of the system (39). This is also the 
characteristic equation for the differential Eq. (37). In terms of the three roots of 
this equation, to wit, 0 and i3, the following three complex integrals can be 
constructed with respect to some initial conditions at the time t  0: 

 (40)

 

Here j is the cubic root of unity, as a counterpart of i, which is the square root 
of negative unityin the case of usual complex numbers. The three complex 
variables from the left hand side of this equation are related, and in quite a few 
ways at that, to the name of Paul Appell, and they have a tremendous 
importance of principle, both from physical (Appell, 1893) as well as from 
mathematical point of view (Appell, 1877). 

Start by noticing that the first of the integrals (40) is a constant of 
motion. Another constant of motion is quadratic, and can be obtained from the 
product of the last two of them, i.e.: 

 (41)

The trajectory is then to be found in the intersection of this quadric with the real 
plane given by the first equality from Eq. (40), therefore it also belongs to the 
quadric 

 (42)

and thus on a sphere. 
Indeed, according to Eq. (37), the charge can be itself represented as a 

genuine periodical process having as components the solutions of the 
differential equation 

 (43)
 

where c is an arbitrary constant vector introduced by three constants of 
integration. Such a phase space obviously generalizes, by dimension at least, the 
phase plane of a regular harmonic oscillator: as one can easily see, if we settle 
for a plane of coordinates in (36), we get a two-dimensional harmonic oscillator. 
The solution of (43), on the other hand, is offered by the velocity vector: 
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with a and b some initial conditions. It is located on the homogeneous quadratic 
cone, having the equation 

 (44)

The coefficients are here decided by the initial conditions. 
Let us continue along this line for a little while. From the system (40) 

we can get the one-parameter group equations of the very process thus 
described by Eqs. (36). Namely, after taking the inverse of the appropriate 
matrix in (40) we end up with 

 (45)

where 1 is the 33 identity matrix, and F(t) is the matrix: 

 

 

 

with (t)  t(ν√3). This matrix is singular: its determinant is 

  

and it vanishes in view of the algebraic identity 

  

and the trigonometric identity 

  

which can be proved by direct calculation. 
 We can even complicate a little the equations of motion (36), admitting 
a gauging where the velocity  has also a component of speed along the ray. 
Such a component would correspond to a propagation. This is in the spirit of a 
unitary description of the light phenomenon, which would thus include both the 
propagation – measured always along the ray – as well as the light motion 
proper – measured orthogonally to the ray – in describing the light. Mention 
should be made that such a situation corresponds to the motion of an electric 
charge in the field of a magnetic pole (Poincaré, 1896). Then the equations of 
motion corresponding to those from (36) are: 

 
 

(46)

where l and p are two parameters representing the ‘amounts’ in which the 
motion is decomposed along the ray and perpendicular to it, respectively. The 
integration procedure described above, leads to a differential form a little more 
complicated than (38), viz.: 
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which can be considered an exact differential: 

 (47)

if, and only if, a, b, care solution of the linear algebraic system given by: 

  

and its positive permutations. This system has nontrivial solutions only if the 
constants l, p and n satisfy the algebraic equation: 

  

which offers three possibilities of construction of the differentials representing 
the corresponding kinematics. They are given by the system of values: 

  

Formally, then, nothing changes with respect to the preceding simpler case: it is 
just that we have here to do with a harmonic of the frequency ν, rather than with 
the frequency itself. 
 The analogy with the classical case can still be taken to work in this 
case, because there is a ‘hidden’ dynamics involved here, and this is, we think, 
the right place to bring about the name of Paul Appell, mentioned above in 
connection with the Eq. (40). This dynamics appeared for the first time in 1893, 
in the known Traité de Mécanique Rationnelle of Appell, Tome I, on page 351, 
but only as an exercise. Quoting: 

 A point is moving in space, under the action of a force whose 
components X, Y, Z are functions of x, y, z, which verify the relations 

 
 

(48)

Prove that the integration of the equations of motion is reduced to 
quadratures [(Appell, 1893), Exercise 16, p. 351, our translation]. 

The proof is simple: first, one has to define a complex position vector, having as 
components the three complex coordinates as in Eq. (40). Then we need to 
define a complex force vector, having as components three corresponding 
complex quantities, constructed from the real components of force in the same 
manner the coordinates are constructed. Obviously, the principles of analysis 
allow us to infer that, if the real forces are functions of real position, the 
complex forces must be functions of complex positions. Therefore, using our 
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notations for the coordinates along the ray, in the following table constructed by 
the rules just mentioned: 

 (49)

every variable of the second line should be a function of the variables from the 
first line. Then notice that, under the conditions (48), each of the components of 
complex force thus defined – assumed conservative, of course – is a function 
only of the corresponding complex coordinate from the first line. Therefore, the 
differential equations of motion can be written as 

 (50)

and can be solved by integrating twice, indeed. The property is transmitted as 
such over to the real corresponding quantities, because the transformations (59) 
are always nonsingular. So the Appell’s result is proved. 
 

9. A Special Optical Signal 
  

In (Mazilu, 2019), we reproduced an excerpt from Ehrenberg’s and 
Siday’s work (Ehrenberg and Siday, 1949), containing a definition of the 
Aharonov-Bohm effect avant la lettre, as we called it there. In fact, taking it a 
little out of its very words, that excerpt contains a general definition of the 
action at distance, in the form: the presence of a charge or a mass, but not the 
charge or the mass itself, is liable to arise physical phenomena. This idea is so 
overrated in physics, that sometimes one can witness gedanken experiments 
whereby an empty universe is invented, with a single particle in it. But the truth 
is that this is just about the essence of action at a distance as described in 
physics today: a charge or a mass, present anywhere in the universe, raises 
phenomena in space anywhere else, and is aroused by such phenomena. This is 
how physics works, anyway, and the last part of this statement – an induction 
phenomenon, as it were – is what interest us most here, as part of a 
phenomenology. 
 The practice of EEG suggests what we think is a long due analogy 
between the brain activity and Earth activity. To wit, the Earth’s crust is simply 
analogous to a skull, perhaps even with respect to their electrical properties. 
For, in view of the practice of EEG, there should be no doubt regarding the fact 
that the skull has definite electrical properties. The correspondent of these 
properties in the case of Earth’s crust is a little obscure, but, again no doubt, so 
it is the very physics of the skull. However, what interests us most here, is a 
certain philosophy of handling a seismogram, that reminds us of a 
corresponding philosophy of handling an EEG signal. Further on, the brain 
electric activity as reflected in the EEG correlations between the different 
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locations on the skull (Pribram, 1998) reminds us of those seismographic 
correlation used in locating the epicenter of the earthquakes in the case of Earth. 
Thus, in our opinion, it becomes a necessary errand from our part, to try and 
extend, along this path, the analogy between mechanics and electrodynamics, 
beyond its usual limits that led to the classical Maxwellian electrodynamics. A 
few theoretical facts, both geophysical and electrical in nature, to be presented 
right away, allow us to describe such a possibility of extension with an 
encouraging impact on the theoretical physics of brain itself. 
 The relevant mathematical problem amounts down here to the 
construction of a correlation between positions along different rays from the 
space occupied by matter, at different times. Classically speaking, this is why 
we need a reference frame, in order to locate a position, and a clock in order to 
mark the moments of time when we locate that position. Specifically, the 
reference frame is usually Euclidean, and the representation of the coordinates 
as lengths along any three reciprocally orthogonal directions is just implicit, so 
to speak. However, while the correlation in general is thought as a kind of 
controlled exchange between places, here it must be constructed based upon an 
equation of propagation, which is actually considered as the infinitesimal form 
of that correlation. In classical electrodynamics as well as in the continuum 
mechanics of isotropic and homogeneous media, the equation of propagation is 
the D’Alembert equation. In view of the results of Louis de Broglie presented 
earlier in this work, we limit our discussion to this equation of propagation. 

It is in these circumstances that G.L. Shpilker took notice of the fact 
that a certain treatment of a real seismogram encompasses a set of procedures 
which, in our opinion, should be universal from theoretical point of view 
(Shpilker, 1984). He takes note of the fact that a recorded seismographic signal 
complicates the act of interpretation beyond the harmonic oscillator structure. 
Then a conclusion comes out, worth considering in general: the position of the 
point of recording must be defined not by lengths, but by three numbers having 
certain algebraical properties, necessary in order to comply with the definition 
of the recorded signal! Taken as the components of a position vector, defined in 
the sense of Bartolomé Coll, these three numbers actually define a class of 
phenomena that may be related as well to an electrical activity, with electricity 
defined as we presented it above. The theory can of course, be applied as such 
to the physics of brain, and this is quite an important conclusion. Let us see 
what is this all about. 
 Shpilker’s theory starts, as we said, from the observation that a 
seismogram can never be represented just by the simple harmonic oscillation 
which, in the geometry of the D’Alembert’s equation, would locally represent a 
plane wave. As we have shown before, the whole physics associated with an 
arbitrary time record is contained in the parameters of that harmonic oscillation. 
A general form of the recorded signal, having any realistic appearance at all, 
would be as a complex-valued function of a locally devised time sequence that 
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serves to ordering the elongations recorded in the seismogram, like, for instance 
in Eq. (3.4) of (Mazilu, 2019). In the particular case of linear phase –   0 in 
Eq. (3.4) – and no time dependence of the amplitude of signal – a  0 in Eq. 
(3.4) – such a realistic appearance would be given through a function of time 
having, in Shpilker’s notations, the form: 

 v1  A ei0e( i )(tt0 ) (51)

with A, t0,0,  and  – five real constants. They are to be extracted from the 
data of the seismogram itself. This is, in Shpilker’s view, the most general 
model form of the recording. By comparison with Eq. (3.4) of (Mazilu, 2019), it 
is quite a particular model, but this is not the point here: it is the general 
philosophy of handling this signal, as developed by Shpilker, that should 
concern us. It starts from the observation that the form of this signal as a 
function of time is all we are able to know positively with a certain degree of 
confidence: the rest, starting from the very idea of propagation, the equation 
representing it etc., is just a series of hypotheses, educated guesses, is true, but, 
still, assumptions. However, we need to emphasize it once again from the very 
beginning, and also certify subsequently via a genuine development, that it is 
the natural philosophy beyond this procedure which is universal, and should 
interest us. Let us expound a little more on this statement. 

First, the equation of D’Alembert, – or any other equation of 
propagation for that matter – incorporates only a part of these hypotheses. 
Admiting, as Louis de Broglie did, that the propagation is described by such an 
equation, the problem of correlating two points in space is usually solved in 
physics by the corresponding Green function associated with this equation. 
However, within Shpilker’s philosophy, i.e. from the point of view of 
professional needs we might say, the emphasis is significantly changed: it falls 
upon the correlation of the recorded signal with the equation of propagation, 
which is a step of knowledge generally bypassed in the regular usage of an 
equation of propagation. For, it is quite clear that the Eq. (51), which is to be 
taken as a product of experiment, bestows a physical content upon the space 
position where the signal is recorded. And this physical content is described by 
Eq. (51) through the intermediary of a local time sequence, in exactly the same 
manner in which a uniform motion of a classical material point, for instance, 
describes the physical content of a certain time sequence, obtained locally with 
an arbitrary clock. Let us analyze the way in which, according to G. L. Shpilker, 
such a physical content should be brought to bear on the geometry. 
 Once we have at our disposal the Eqs. (2.1) of (Mazilu, 2019), and (51) 
here – in general, as we said, an equation of propagation and a physical content 
of a local sequence of time – the Shpilker’s argument follows quite a simple 
logic, customary we might say: one must accept that any signal, even a recorded 
signal, is a solution of the D’Alembert equation, for this equation defines the 
concept of signal within matter, and the recorded signal itself is, obviously, such 
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a signal. The only condition is that the surface of earthquakes should be a 
matter surface, a quality that makes out of it a surface of separation of the 
matter from space. Notice now that the representation (51) of the recorded 
signal does not contain explicitly any space position, be it that of the source of 
the seism or of the position of seismograph, but just some parameters to be read 
out of the recordings. It would be therefore virtually impossible to set this 
physical content of the signal in connection with the equation of propagation, if 
one does not assume that the position of the recording point in space is somehow 
contained implicitly among the parameters representing this physical content: α0, 
ω, β. Shpilker writes the solution of the D’Alembert equation D in the form: 

 u(x,t)  Ae
 x y c( tt0 )  

; A  A ei0 (52)

where ξ is an arbitrary complex vector. Obviously, this solution satisfies 
D’Alembert equation, both in the variables (x,t), and in the variables (y,t0), no 
matter of the vector ξ and amplitude A, which are here taken as complex 
quantities. Consequently, the Eq. (52) actually represents a correlator 
analogous to the classical Green function, of two ‘legal signals’, whose 
‘legality’ is defined here according to a precise criterion though: every 
admissible signal must be a solution of D’Alembert’s equation. From 
theoretical point of view this signal must be found all over the places within 
matter, therefore both at the location of emission and the location of recording. 
Except that now the functional form of the signal at the emission position, or in 
fact during propagation, is somewhat more realistic, inasmuch as it is not a 
priori defined – for instance by analogy with a mechanical model, as we did in 
Chapter 3 of (Mazilu, 2019) – but empirically, with a physical content defined 
in the manner we define the recorded signal. 

Now the solution of our problem comes down to matching the 
theoretical representation (52) with the recorded signal from Eq. (51). In order 
to do this, Shpilker uses the freedom offered by the arbitrariness of the vector : 
in the surface delimiting the Earth seismically – the surface of quakes, as we 
would like to call it – he takes the signal as being of the form 

 v(x,t)  Ae z( kil ) x y ( i )(tt0 ) (53)

This signal reduces to that from Eq. (51) for |x–y |0, which means that |ymay 
be taken as the position of the point of recording. Then, again, the function (53) 
should be a solution of the D’Alembert equation. This time, however, special 
conditions must be secured, whereby over the recorded signal one overlays 
another signal, which needs to be conveniently described in order to account for 
the conditions in which the measurement is performed. 
 Before any explanation on these conditions, a word about the notations 
from Eq. (53): the vector z, as well as ξ for that matter, is unknown. The vector 
kil is an arbitrary complex vector, submitted by Shpilker to the constraints: 
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 k1
2  l1

2  k2
2  l2

2  k3
2  l3

2   2 (54)

where τ is an arbitrary real number. Further on, one denotes 
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(55)

so that this is just a complex vector with its components given by the diagonal 
entries of the complex matrix z(kil)  |zk+il|. 
 Now, coming back on the track of our discussion, Shpilker claims that 
in order to get a correct ‘reconstruction’ of the field from the recorded signal, as 
defined by Eq. (51), the coordinates of the position of recording must be 
expressed by the ratios: 

 y j  l j / k j ; j  1,2,3 (56)

submitted to the conditions 

 y2  y3, y3  y1, y1  y2 (57)

which are thus necessary and sufficient for a reconstruction of the field from 
recorded data. Therefore Shpilker’s local coordinates are not regular 
coordinates. It is more proper to say that they define in fact a reference frame: 
that reference frame in which the coordinates of the position of the recording 
point with respect to the point where the signal is originating, are given by the 
vector y having the components (56), submitted to the conditions from Eq. (57). 
The question is, what are these coordinates, from a physical point of view, and 
this depends entirely on the physical quantity we are measuring locally. This is 
the whole point of Shpilker’s natural philosophy: the location is pinpointed in 
space by the very quantity to be perceived at that location! 
 Before anything else along this line, let us finish the job we started here: 
to show that in order to have a solution of the problem in the form from Eq. 
(53), the Shpilker’s demands have to be met, indeed. In order to prove this, 
notice that from the Eqs. (51) and (52) one gets: 

 u( y,t)  v1 
c2 (1

2  2
2  3

2 )   2  2  2i

c2 ( 
1

2
 

2

2
 

3

2
)   2  2






(58)

by the virtue of the fact that ξ has complex components in general. In fact, 
according to Eq. (53) these components are defined by Eq. (55), so that the 
arbitrariness of the vector ξ, having six real components, is transferred into the 
ambiguity of the vectors z, k and l, which involve nine real components. The 
situation becomes normal if we have three relations connecting these last two 
vectors, which must be measurement constraints, as those given by Shpilker in 
Eq. (54), which can be taken just naturally as such. Therefore, using the Eqs. 
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(56) in (58), the components of vector z can be found as solutions of the linear 
system: which is obviously equivalent to the system: 
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(59)

This system is in turn compatible, and has unique solution if, and only if, its 
principal matrix is nonsingular. The determinant of this matrix can be easily 
calculated, and gives: 
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Therefore the compatibility of the system (59) comes down to the fact that none 
of the projections of the real vector k on the planes of coordinate should be 
collinear with the corresponding projection of the real vector l. Solving the 
system (59) results in 
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and its even permutations over indices 1, 2, 3. Considering now the definitions 
from Eq. (56), we will have right away: 
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and two more relations, given by the even permutations over indices 1,2,3. This 
proves the necessity and sufficiency of the Shpilker’s conditions (57), showing, 
moreover, that the vector k must have all its components nonnull for a 
reconstruction of the field in finite terms. Consequently, the triple |y represents 
here the position of recording point of the earthquake, according to its definition 
contained in the particular relation between D’Alembert equation – describing 
the signal propagation – and the functional form of the recorded signal. 
 For G. L. Shpilker – as well as for the whole geophysicists’ community, 
in fact – such a solution of the problem of quakes is essential. Indeed, the 
seismogram is actually a single closed-form expresssion of a limiting condition 
in space and time for an equation of propagation – the case in point is 
D’Alembert equation – and, for instance, a conceivable Cauchy problem of this 
case cannot be solved. Such a solution needs boundary conditions in multiple 
points on a surface. Usually, for solving the problem for the case in point, one 
would need conditions over the entire surface of the Earth, defined by the 
existence of quakes. First of all, such a surface cannot be defined itself, even if 
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we disregard the idea of seismogram, to say nothing of the fact that one cannot 
place seismographs all over the places where an earthquake is felt, in order to 
make the necessary measurements. It is therefore instrumental, indeed, to built a 
signal as the solution of the equation of propagation, starting from data 
recorded sporadically, insular data at best. Which is what Shpilker’s theory 
accomplishes in a brilliant way. This approach has, however, much more 
general connotations, even fundamental we should say, from the point of view 
of the theoretical physics. These connotations can be extracted even limiting 
ourselves to the classical differential geometrical idea of adaptation of a 
reference frame to a surface embedded in space (Delphenich, 2013a; 
Delphenich, 2013b). 
 There is not too much to add over what we just said above, in order to 
see in this approach of handling the seismic signal, an opportunity of extension 
to the brain EEG case. The coordinates y, in particular, can be useful in the 
theory of evoked potentials. In seismology they give the coordinates of 
recording point with respect to the point of initiation of the quake. In the case of 
EEG, they might as well represent the coordinates of the point of initiation of 
the neuronal activity having as result the skull recording. Only, in this last case 
we need to be assured that the vector y is somehow related to an electric or 
magnetic activity, which is indeed the general case, if we connect its 
components with the split angle of the charge induced by a recorded signal in a 
place on the skull. 
 In the previous development we have followed as much as possible the 
Shpilker’s notations. However, even in these notations, it is not too much to say 
over what has already been said, in order to see that in Eq. (54) the parameter  
can be identified with the charge (31), and the three Shpilker coordinates (56) 
can be, in fact, three arbitrary charge splits of the very same charge. This 
interpretation corresponds to a philosophy of the EEG, quite natural we should 
say: the electric signal, initiated somewhere in the brain is perceived on the 
skull, just like the seismic signal. It creates a local charge, and this is actually 
measured. Any three splits of this charge define, as in Eq. (35), three 
coordinates of the recording point with respect to the point of initiation of the 
signal. The coordinates of such a location are by no means unique, but this 
arbitrariness can be tied up with the arbitrariness of the reference frame with 
respect to which we locate the position on the skull. 
 In order to carry on physically and mathematically such a natural 
philosophy, a little inventory of the minimal necessities may be in order. First, 
in the order of things necessary, comes the definition of the general signal to 
replace that from Eq. (51). If the mechanical analogy is to be maintained – and 
everything recommends it – then the signal given in Eq. (3.4) of (Mazilu, 2019) 
is our best candidate, and we shall pursue this idea, under the guidance of 
Shpilker example, of course. Second in the order of things necessary, comes an 
appropriate equation of propagation, in order to replace, more realistically, the 
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idealistic D’Alembert equation. Just as in the case of Schrödinger equation for 
the case of interpretation, our best candidate is the heat equation, inasmuch as it 
satisfies to the same invariance group as the Schrödinger equation. Besides, its 
theoretical handling asks for a definite relationship between space and time 
measures, which is instrumental for a physical theory. Thirdly, the Shpilker’s 
natural philosophy specifically asks for solving an issue raised by the practice of 
EEG: the connection between the coordinate along the ray and any other 
geometrical coordinate we may conveniently use in the physics of brain. A 
gauging procedure defining static electromagnetic fields of the nature of 
distributed charges, may add to our phenomenological understanding of the 
problems. 
 

10. A Yang-Mills Gauging 
  

Zenaida Uy’s gauging procedure (Uy, 1976) can be taken as a 
procedure of defining some electromagnetic quantities, indeed, related to the 
Shpilker coordinates of the point of recording. In view of the fact that in EEG 
the recording point is on the skull, the electromagnetic quantities in question 
should be thus connected with the electric properties of the skull itself. But there 
is more to it: as it turns out, the very same coordinates must be also connected 
with some magnetic properties. And thus, they can be made responsible for the 
shape of the magnetic signals recorded in a EMG around the skull. 
 In order to show this, let us describe the Uy’s scaling procedure. It is 
connected with a geometry of the quadratic quantities (y2y3, y3y1, y1y2) which 
appear in the definition (61) above or, in fact in the Eqs. (41) and (42) in 
connection with Appell coordinates. To start with, if one identifies Shpilker 
coordinates with the components of the vector m, the Eqs. (36) can be written in 
the compact form 

 (62)

Here the 33 matrices hk are constructed from the structure constants of the 
rotation group according to the rule: (hk)ij  kij, where the totally skew-
symmetric Levi-Civita tensor . This definition results in the following three 
matrices making a closed algebraic system, indeed, which generates an 
exponential part of the three-dimensional rotation group in the Euclidean space, 
the part connected with the identity matrix: 

 (63)

These matrices are, indeed, a three-dimensional linear basis in the space of 
skew-symmetric 33 matrices. Choose now the vector having components of 
second degree mentioned above, as the column matrix: 
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The action of the basis matrices (63) on this vector defines three new vectors 
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Zenaida Uy builds then the following four vectors 

 
b1  f ( y) (h1 b0 ); b2  f ( y) (h2 b0 ); b3  f ( y) (h3 b0 )

b4  g( y) (1 b0 ) 
 (66)

where f and g are two functions, arbitrary for the moment. Then she takes notice 
of the important fact that the tetrad (b1, b2, b3, b4) can be so chosen as to 
represent static Yang-Mills SU(2) fields. As usually acknowledged, the Yang-
Mills fields, in general, are to be considered as the natural generalization of the 
classical electromagnetic fields, to which one adds the properties brought about 
by the relativistic and wave-mechanical concepts. However we take them here as 
they were considered at the moment they were discovered: it is this take that can 
have any meaning for the physics of brain, as we shall see in the present work. 
Quoting the abstract of the original work of Chen-Ning Yang and Robert Mills: 

It is pointed out that the usual principle of invariance under isotopic 
spin rotation is not consistent with the concept of localized fields. The 
possibility is explored of having invariance under local isotopic spin 
rotations. This leads to formulating a principle of isotopic gauge 
invariance and the existence of a b field which has the same relation to 
the isotopic spin that the electromagnetic field has to the electric charge. 
The b field satisfies nonlinear differential equations. The quanta of the b 
field are particles with spin unity, and electric charge e or zero (Yang & 
Mills, 1954). 

It is best to explain our incentives in considering the Yang-Mills fields here, in 
connection with this agenda of the renowned work just cited. 
 For the moment being it is sufficient to declare that these incentives 
originate all from the idea of memory as defined holographically. A hologram 
represents a ‘deposit’ as it were, of a space figure on a certain surface. 
However, rarely, if ever, is it noticed that this ‘deposit’ shares with the space 
original its dimensionality. Specifically, it is three-dimensional just like the 
space figure it describes, and this fact can be revealed algebraically [(Mazilu et 
al., 2019), Chapter 7]. The physical properties are quite specifically deposited 
on a surface: in the local variation of its curvature parameters. Now, the 
matrices describing the physical variations of curvature, share with the isotopic 
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classical fields the property of three-dimensionality, and this shall be further 
detailed in the present work. The physics itself can be connected to the space 
and time only via a reference frame, and this is the whole morale of Zenaida 
Uy’s gauging procedure. In short, it solves one of the important issues of the 
definition of a reference frame: it has to be defined by a statical condition, to 
which any dynamics should be referred. 
 The gauge field intensities related to b fields (66) are given by a 
generalization of the classical electrodynamics relations. These are modified 
according to Yang-Mills nonabelian prescription (Yang and Mills, 1954); see 
also (Wu and Yang, 1969): 

 f  b  b  b  b (67)

under the following ‘equations of motion’, as they are usually called: 

  f  b  f  0; b  0
 

(68)

Here, the usual summation over repeated indices is assumed. The static feature 
of the field is explicitly recognized in the fact that the tetrad |b, and the 
corresponding field intensities (67), do not depend explicitly on any ‘time’ 
coordinate, y4 say, that might incidentally complete the position y to an event. 
Zenaida Uy specifically assumes that the functions f and g depend on 
coordinates via the ‘volume’   y1y2y3 of the cuboid whose diagonal is the 
vector y, and, additionally, that g  f. One can then calculate the ‘electric’ and 
‘magnetic’ gauge field intensities associated to the tetrad |b, by the following 
prescriptions, which replicate the well-known classical definition of 
electromagnetic field intensities (Wu & Yang, 1969): 

 Ek  ifk 4; Hk 
1

2
kij fij

(69)

Calculating effectively the electric field here, with Eq. (66) and the definition 
(67) of field intensities, we have the result: 
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(70)

where the summation runs over the positive permutations of the numerical 
indices, and a prime means derivative with respect to the unique variable – in 
this case  – as usual. It is quite important to take notice here of the form of the 
vectors that we denoted in Eq. (70) by ek. These are given by the columns of a 
quasi-orthogonal matrix that plays a crucial part in the space inversions. Such a 
matrix is, indeed, of the form involved in the Maxwell’s construction of the 
electromagnetic stresses, and we called ‘equivalent to a vector’ [see (Mazilu et 
al., 2019), Eqs. (5.22) ff.]: 

 (71)
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We shall return later to this important issue. For now, let us calculate the 
magnetic fields: using again (66), (67), and the second of (69), we further have 
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Here we have to notice that the second condition from Eq. (68) is an identity, 
for we have 

 b  k
b

k
 [ f () f ](u

k
)  

 

where uk are the column matrices from Eq. (5.35). Now, in view of the obvious 
fact that uk  0 the result is automatically the null vector. 
 The geometric interpretation of this situation is as follows. Take the 
elementary vector surface 1-forms: 

 dsk  klm yldym (73)

They can be written as the bilinear forms, using the h-matrices from Eq. (63): 

 dsk  y hk dy (74)

so that the column matrices used in the definitions of the vectors from (65) are, 
in fact, defined by identities uk  hk|y. The problem now, is the presence in our 
theory of the vector from Eq. (64). As one can see, however, a justification is 
not altogether out of hand: it is the essential vector for the absolute geometry 
based upon classical idea of volume. For instance, we get the important gauging 
relation mentioned above, by noticing the dot product 

 y b
0
 3y

1
y

2
y

3 (75)

which allows for a statistical discussion of electromagnetic stresses as fluxes. 
 

11. Conclusions 
  

The living brain should be physically modelled as a universe, analogous 
with the physical universe of today’s cosmology, and we describe the analogy 
in its essentials. The analogy is mathematically based on the idea of 
interpretation of the universe, the only positive definition of which is provided 
by the wave mechanics (see I for details on the concept of interpretation). 
According to this idea, a universe can be interpreted as a homogeneous 
ensemble of free classical particles. As a static ensemble, such an ensemble can 
be thought in terms of identical classical particles endowed with gravitational 
mass and two charges, electric and magnetic. Then between these particles there 
are Newtonian forces in equilibrium in any direction at any distance, provided a 
certain quadratic expression involving the physical characteristics of particles 
vanishes. We call this quadratic expression inertial mass. A universe, in 
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general, can be mathematically described according to the sign of inertial mass 
of the particles of its interpretative ensemble. A positive inertial mass means an 
actual physical structure of the universe, whereby the Newtonian forces are 
dominating at any space and time scale. If under this condition, if the 
gravitational forces prevail, then we have the usual physical universe of 
cosmology. On the other hand, if for positive inertial mass, the electric forces 
prevail, we have to do with the universe of brain. 

The analogy goes deeper, thus making possible a proper physical theory 
of the brain. First, the constitutive unit of brain matter – the neuron – handles the 
charges within brain just as the rays of light in the regular physical optics handle 
the Bartolomé Coll’s luxons in the cosmological universe of physics (see I). 
However, inasmuch as the charges are electric as well as magnetic, 
phenomenologically corresponding to the two possibilities of non-destructive 
experimental access to brain, we need to handle the physics of brain 
accordingly. As it turns out, though, this handling has nothing of the kind the 
actual theoretical physics does not know. This second part of our work 
develops, for instance, the mathematics of recorded signals from the brain by 
analogy with the mathematics of seismic recording in the physics of Earth’s 
crust, which thus can be taken as the analogue of the skull, or vice versa, if one 
likes to. And, sure enough, this mathematics is prone to a general elucidation by 
Yang-Mills fields, even though defined by a special scaling procedure. As life 
has it, this scaling procedure is long known in theoretical physics! In hindsight, 
the special electrodynamics thus built may be able to explain, for instance, the 
concentration of social life in the places of high seismic activity, a circumstance 
helping us, later on along the proceedings of the present work, in defining the 
concept of infinity for the brain model universe. 
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PRINCIPII FIZICE ÎN EVIDENȚIEREA MECANISMELOR DE 

 FUNCȚIONARE A CREIERULUI. PARTEA A II-A 
 

(Rezumat) 
 

În prezenta lucrare creierul este modelat fizic ca un univers, analog modelelor 
fizice cosmoligice existente. Analogia este explicitată matematic cu ajutorul unei teorii 
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ce implică mărimi fizice ce descriu materia din punct de vedere fenomenologic. Într-un 
astfel de context, sarcina, care este proprietatea fundamentală a materiei creierului viu, 
ar trebui să aibă aceeași origine ca masa gravitațională: este „creată” sub influența 
materiei. Un astfel de model permite corespondența dintre masa gravitațională, sarcina 
electrică și masa inerțială. Această masă este controlată prin intermediul materiei aflate 
la infinit, în acord cu principiul general al lui Mach. În consecință, această analogie ne 
permite să definim semnalele EEG și MEG, utilizate pentru dinamicile cerebrale. 
Aceste semnale sunt definite la fel ca semnalele seismice: scoarța terestră prin urmare 
poate fi asociată structurilor craniene. Mai mult, prezentăm un câmp Yang-Mills 
staționar ca o instanță a unui câmp electromagnetic al acestui univers.  
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